East Penn School District Secondary Curriculum								
A Planned Course Statement for AP Computer Science A								
Course #365	Grade(s <u>) 10-12</u>	<u> </u>						
Department: Computer Sc	cience							
Length of Period (mins.) 4	41 Total Clock Hours	123						
Periods per Week	5 Length of Course (yrs.)	1						
Type of Offerin	ng:requiredx_elective							
с	CREDIT1							
Ad	dopted <u>4/27/09</u>							

Developed by: Carlen Blackstone Beth Stoudt

Description of Course #365 Course Title: AP Computer Science A

Description: This course is designed for the college-bound student who wishes to pursue college-level studies while still in high school. This course will cover all of the curriculum as prescribed by the College Board for a one semester college course in computer science. Upon completion of this course, students will be prepared to take the AP Computer Science A level exam. Students will be expected to engage in rigorous problem solving activities and utilize computer resources outside of class.

Goals:

- To develop good programming methodology using control structures, object-oriented design, independent modules, recursion when needed, array structures, string processing, input and output files, and efficient means of searching for and sorting data
- To solve interesting problems by using computer algorithms
- To gain exposure to college-level computer science material and possibly gain college credit by performing well on the corresponding AP exam that is given in May

Requirements:

Prerequisite: Programming Foundations (recommended 84% or better), Algebra II (recommended 84% or better), or permission of instructor.

Text:

Lewis, John, Loftus, William, Cocking, Cara. <u>Java Software Solutions for AP* Computer</u> <u>Science A</u>, Pearson Education, Inc., c2006..

Key to Levels of Achievement (listed with each learning objective)	
--	--

Awareness (A)	Students are introduced to concepts, forms, and patterns.
Learning (L)	Students are involved in a sequence of steps and practice activities which involve further development and allow for evaluation of process.
Understanding (U)	Students demonstrate ability to apply acquired concepts and skills to individual assignments and projects on an independent level.
Reinforcement (R)	Students maintain and broaden understanding of concepts and skills to accomplish tasks at a greater level of sophistication.

Course Objectives =	Compu	iter Science (A) A.P.				Page 1
Unit	Num	Objective	Level	Content	Evaluation	Standard
I. Computer Science, Architecture, and Languages	1	Students will identify the various aspects of computer science and know what it means to study the field of computer science.	L	 Definition of Computer Sci Ethical use of computers Scope of computer science 		ISTE 5.a ISTE 6.a
	2	Students will identify the various parts of computer architecture, explain their function, and understand how computers represent data and instructions.	L	 Configuration of hardware functionality of each part Understanding of networks Binary representation of da addresses, and instructions 		ISTE 6.a
	3	Students will analyze high-level language development historically, understand the nature of assembly language, and know why to study Java.	R	 Development and characteristics of various hi level languages Writing simple assembly language code Euclid's Algorithm 	gh- Written paper Unit Test	ISTE 6.a
	4	Students will be introduced to Java and object-oriented programming through role-play and modifying existing classes	R	 Structured programming concepts Object-oriented programmi concepts Structure of Java programm language 	Unit Test	ISTE 1.b ISTE 4.b
II. Introduction to Java Control Structures	5	Students will know the difference between primitives and objects in Java and be able to understand pre- written Java code.	L	 Karel the Robot – already created programs Using basic robot methods Creating worlds 	Classroom activities Unit Test	ISTE 1.a ISTE 4.d
	6	Students will know and use the three basic control structures of any language and see how to implement them in Java using blocks of code.	U	 Karel the Robot – creating you own programs Sequential statements Loop structures Decision structures 	your Classroom activities Programming project - Karel SquareMaker - Karel Harvester Unit Test	ISTE 1.b ISTE 4.b
	7	Students will devise an intelligent task for a robot to complete and write the code to complete it using control structures and new methods if needed.	R	 RacerRobot class example Defining new methods such turnRight, faceNorth, isBlockedRight, raceStride 	Classroom activities Programming project - Karel Steeple Chaser Unit Test	ISTE 1.b ISTE 4.b
III. Sequential Structures in Java	8	Students will learn how to declare variables and do input and output in Java.	U	 Declaring primitive types Using the Scanner class to i data Using System.out.println w formatting 		ISTE 3.b ISTE 4.a
	9	Students will evaluate and write assignment statements with arithmetic expressions using	U	 Arithmetic operators (+,-,*, %) Boolean comparisons 	, /, Unit Test	ISTE 3.b ISTE 4.a

Page 1

Course Objectives –	Compu	ter Science (A) A.P.				Page 2
		various operators and functions in Java with type-casting when needed.		 (<,<=,>,>=, ==,!=).and operators (&&, ,!) Short-cut assignment operators (=, +=, -=, *=, /=, %=, ++,) Math functions (abs, sqrt, pow) Mixed-mode operations and type-casting 		
	10	Students will know when and how to use constants and the difference between integer and real data in terms of exactness and storage.		 Using MAX_INT as a limit Using final to represent a user- defined constant Round-off error with double 	Unit Test	ISTE 3.b ISTE 4.a
	11	Students be able to write a Java program that inputs, calculates, and outputs information using correct data types, formatting, prompts, type-casting, spacing, and indentation.	U	 Creating a main method to run a program Designing an algorithm using pseudo-code Editing, debugging, and testing a program 	Programming project - Geometric Figures Take-home Program - Simple GPA Calculation	ISTE 1.b ISTE 4.b
Unit	Num	Objective	Level	Content	Evaluation	Standard
IV. Loop and Decision Structures in Java	12	Students will use the for statement for definite loops as well as the while and dowhile statements for indefinite pre-test and post-test loops respectively in a Java program.	U	 The for statement for definite loop structures The while and dowhile statements Counter-controlled, sentinel- controlled, and query- controlled loops for more than one data set 	Programs to Present - Compound Interest - Grade Report - Pascal's Triangle Unit Test	ISTE 3.b ISTE 4.a
	13	Students will use one-way, two- way, or multi-way ifthen else statements as well as the switch, case, and break statements to make decisions in a Java program.	U	 One-way, two-way, or multiway ifthenelse statements switch, case, land break statements writing blocks of code for multiple statements 	Programs to Present - Calculator Program - Payroll Report - GPA Report Unit Test	ISTE 3.b ISTE 4.a
	14	Students will use nested selection and repetition statements in writing Java programs in order to create a larger project with well-structured code.	R	 Designing the structure for a larger program Designing the algorithms needed from pseudo-code and flowcharts Editing, debugging, and testing a larger program in an efficient way 	Programming project - Factoring, Primes, Prime Factorization, and GCF/LCM Take-home Program - Quadratic Formula	ISTE 1.b ISTE 4.b
V. Defining Your Own Classes in Java	15	Students will know the concepts of encapsulation, public methods, private methods, constructors,	L	 Encapsulation and information hiding Private attributes and public 	Unit Test	ISTE 3.b ISTE 4.a

Course Objectives –	Compu	ter Science (A) A.P.			Page 3
	16	accessors and mutators, final and static, this and null, both call-by- value and call-by-reference parameters, and overloading Students will write a Driver program to use existing classes and create random numbers.	U	methodsConstructors and overloadingAccessors and mutatorsCall-by-value and call-by- reference parametersGenerating random numbersUsing static variables and methodsDeclaring objects in a client programCalling methods from a client	ISTE 1.b ISTE 4.b
	17	Students will modify methods of an existing class to change functionality.	U	 Program Changing private attributes Changing public methods Using parameters when needed Using the this and null keywords Creating overloaded constructors and methods Programming project Frog1D becomes Frog2D Take-home Program Bank Account 	ISTE 1.b ISTE 4.b
	18	Students will design their own class for scratch.	R	 Creating private attributes Creating public methods Creating overloaded and static constructors and methods Using the this and null keywords Programming project Complex Numbers Take-home Program Bank Account 	ISTE 1.b ISTE 4.b
VI. One-dimensional Arrays, Strings, and ArrayLists	19	Students will input, output, and process one-dimensional arrays while understanding how they are stored internally.	U	 Dr. Seuss' "Too Many Daves" Inputting values into an array Printing a table from an array Accumulating and reversing 	ISTE 1.b ISTE 4.b
Unit	Num	Objective	Level	Content Evaluation	Standard
	20	Students will use arrays to solve problems including table-look up and frequency distributions.	U	 Table-lookup algorithms Frequency distribution algorithms Programs to Present Calculating Postal Rates Calculating Wages Tallying Percentages Tallying Voting Results Unit Test 	ISTE 1.b ISTE 4.b
	21	Students will process either unordered or ordered safe arrays by searching, sorting, merging, inserting, and deleting and reversing.	R	 Linear and binary searching Max-min method of sorting Adding or removing from an unordered vs. an ordered array Reversing an array Merging two arrays into one Exception handling for too many array elements Programs to Present Reverse Game Merging Runs of Data Group Programming Project School Store Inventory 	ISTE 1.b ISTE 4.b

Course Objectives =	- Compu	tter Science (A) A.P.				Page 4
	22	Students will use arrays to process String objects. Students will understand the nature of collections of objects and be able to use the ArrayList collection's methods to accomplish	U U	 Using the length, charAt, toUpperCase, and substring methods Inputting and traversing a string of characters Java Collections Declaring ArrayList objects Using the get, set, remove, isEmpty, size, and add 	Programs to Present - Letters in a Sentence - Unique Words in a String Unit Test Programs to Present - Student phone numbers - Vectors of Frog2D Group Programming Project	ISTE 1.b ISTE 4.b ISTE 1.b ISTE 2.d ISTE 4.b
VII. Sorting Algorithms	24	the same tasks as a static array. Students will know how to trace, analyze, and use the Selection, Insertion, and Bubble sorts and understand $O(n^2)$ time.	U	 methods in the ArrayList class Selection sort Insertion sort Bubble sort 	 School Store Inventory Unit Test Student presentations and programs Unit Test 	ISTE 2.b
	25	Students will know how to trace, analyze, and use the Mergesort, Quicksort, and Heapsort and understand $O(n*log_2 n)$ time.	U	Merge sortQuick sortHeap sort	Student presentations and programs Unit Test	ISTE 2.b
	26	Students will know the differences between the above sorts and the Shell sort, Radix sort, Bucket sort, Pointer sort, Merge Bubble sort, and External File sort.	U	 Shell sort Radix sort Bucket sort Pointer sort Merge Bubble sort External File sort 	Student presentations and programs Unit Test	ISTE 2.b
VIII. Interfaces, Inheritance, and Abstract Classes	27	Students will understand the purpose of interfaces, inheritance, and abstract classes and know the concepts and Java keywords needed to implement them.	L	 Interfaces – contract with implementing classes Inheritance – Using super for an "is a" relationship Abstract classes – using inheritance to define more general methods and defining abstract methods at a lower level 	 Homework Assignment Create a hierarchical design Read the GridWorld case study student manual Unit Test 	ISTE 3.b ISTE 4.a ISTE 6.d
	28	Students will use existing Comparable, List, and ListIterator interfaces and create an interface of their own.	U	 Implementing the Comparable interface with a compareTo method Iterating through an ArrayList and using enhanced For loops GridWorld related code 	Programming Project - Modify the Inventory project Unit Test	ISTE 2.d ISTE 3.b ISTE 4.a ISTE 6.d
Unit	Num	Objective	Level	Content	Evaluation	Standard
	29	Students will write inherited classes from an existing project with already-defined base classes.	U	 Defining a Wheel class to extend a Circle class Defining different kinds of 	Programming Project - Creating a Triangle, RegularPolygon, Square1,	ISTE 1.b ISTE 4.b ISTE 6.d

Page 4

Course Objectives –	Compu	tter Science (A) A.P.				Page 5
				Bugs to extend the Bug class	and Square2 class Unit Test	
	30	Students will override methods of "super" classes and define abstract methods of "super" abstract classes.	U	 Abstract classes defined methods Abstract methods to be defined by sub-classes 	Programming Project - Creating a Triangle, RegularPolygon, Square1, and Square2 class Unit Test	ISTE 1.b ISTE 4.b ISTE 6.d
	31	Students will add objects to the GridWorld case study by using inheritance and overriding methods.	R	 Creating a Critter class and different kinds of Critters Knowing how all of the classes in GridWorld relate to each other 	Programming Project - Add a new class of objects to the GridWorld case study Unit Test	ISTE 1.b ISTE 4.b ISTE 6.d
IX. Two-dimensional Arrays, Files, and Recursion	32	Students will input, output, and process two-dimensional arrays while understanding how they are stored internally.		 Inputting two-dimensional arrays Outputting a table of two-dimensional array data Looking up, tallying, or accumulating results in a two-dimensional array 	Programs to Present - Magic Square - On-line Voting Take-home Program - Weighted Grades - Gauss-Jordan Method for Solving NxN Systems Unit Test	ISTE 1.b ISTE 4.b ISTE 6.d
	33	Students will read data from a text file using the Scanner and File classes with a try {} catch {} block of code for exception handling.		 Using an input file with the Scanner class Inputting the name of the file Making sure the file exists Checking for the end of the file 	Programs to Present - Bowling Scores - Survey Results Unit Test	ISTE 1.b ISTE 4.b ISTE 6.d
	34	Students will know how to write some common math functions recursively.		 Tracing recursive functions Writing recursive functions from the definition Creating recursive definitions 	Programs to Present - Factorial, Euclid's GCF, Fibonacci, Power, Newton's Root, ConvertToBase, Permutations, and Continuous Fractions Unit Test	ISTE 1.b ISTE 4.b ISTE 6.d
	35	Students will know how to use recursion to solve problems involving backtracking and decomposition.		 Decomposition example - Tower of Hanoi Backtracking example – Eight Queens 	Analysis Assignments Programming Project - Mouse in a Maze, Boggle, or Sudoku Unit Test	ISTE 1.b ISTE 4.b ISTE 6.d
X. ACSL	36	Students will participate in the ACSL competition throughout the year by learning the concepts and writing the programs required.		 Computer Number Systems, Recursive Functions, Lisp, Boolean Algebra, Bit String Flicking, Digital Electronics, Graph Theory, Data Structures, and Prefix/Infix/Postfix 	Short Problems Test (4 per year) Programming Assignment (4 per year)	ISTE 1.a ISTE 3.d ISTE 4.b